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A Backprojection Slice Theorem for
Tomographic Reconstruction
Eduardo Miqueles , Nikolay Koshev , and Elias S. Helou

Abstract— Fast image reconstruction techniques are becoming
important with the increasing number of scientific cases in
high resolution micro and nano tomography. The processing
of the large scale 3D data demands new mathematical tools
for the tomographic reconstruction. Due to the high compu-
tational complexity of most current algorithms, big data sizes
demands powerful hardware and more sophisticated numerical
techniques. Several reconstruction algorithms are dependent on a
mathematical tool called backprojection (a transposition process).
A conventional implementation of the backprojection operator
has cubic computational complexity. In the present manuscript
we propose a new fast backprojection operator for the processing
of tomographic data, providing a low-cost algorithm for this
task. We compare our formula against other fast transposition
techniques, using real and simulated large data sets.

Index Terms— Imaging, tomography, reconstruction
algorithms.

I. INTRODUCTION

TOMOGRAPHIC imaging is a very powerful instrument
of non-destructive research and control of the internal

structure of non-opaque objects. An important branch of
tomographic techniques is transmission tomography, which
can be used at nano, micro and macro resolution levels.
Physically, tomography is based on registering the energy loss
or/and intensity loss of the incoming electromagnetic wave
(X-rays for instance) or even the elastic scattering after passing
through the object under investigation also referred to here as
sample. In our case, we consider that X-rays generated from
a synchrotron light source hit the object under investigation
determining a projection image (also referred as frame) at
a CCD (charge coupled device) camera. A typical dataset
is shown in Figure 1.A, where a high-resolution frame P
gathered using the X-rays source is shown, with dimensions

Manuscript received August 2, 2016; revised February 16, 2017,
May 25, 2017, August 11, 2017, and October 4, 2017; accepted
October 20, 2017. Date of publication October 26, 2017; date of current
version November 28, 2017. The work of E. Miqueles was supported by
CNPq under Grant 442000/2014-6. The work of N. Koshev was supported by
Fapesp under Grant 2014/22040-7. The work of E. S. Helou was supported
in part by Fapesp under Grant 2013/07375-0 and Grant 2016/24286-9 and
in part by CNPq under Grant 311476/2014-7. The associate editor coordi-
nating the review of this manuscript and approving it for publication was
Dr. Abd-Krim K. Seghouane. (Corresponding author: Eduardo Miqueles.)

E. Miqueles is with the Brazilian Synchrotron Light Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo 13083-970, Brazil
(e-mail: eduardo.miqueles@lnls.br).

N. Koshev and E. S. Helou are with the Instituto de Ciências Matemáticas
e de Computação, Universty of São Paulo, São Carlos 13566-590, Brazil.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2017.2766785

Fig. 1. (A) Projection (or frame) for a cylindrical sample obtained with a
CCD camera (B) 3D representation of the measured data: P is the measured
frame and G is the sinogram image at a given row of the area detector.

Fig. 2. Fluxogram for a tomographic reconstruction. Most of the existing
algorithms depends on the operators {B,R,P}. A new approach for B is
presented in this manuscript; see the text for further details.

2048 × 2048. After half-rotation of the sample on the rotation
axis (indicated by the angle θ ), we obtain a cubic dataset as
shown in Figure 1.B. Each slice of this dataset give us an
image, which is called sinogram, and that will be used as input
to an appropriate inversion algorithm in order to reconstruct
the slice of the sample. The classical inversion problem
described by the aforementioned techniques is modelled by
the Radon transform R, which will be defined later, after we
pose our problem. A simple tomographic image reconstruction
scheme is presented in Figure 2. One of the most celebrated
reconstruction algorithms, the filtered backprojection, depends
explicitly on the action of two operators - say P and B - on
the measured data g, so that the output image can be stored
as f = B{P[g]} for all possible pixels. Usually, P is a
pre-processing step including removal of ring artifacts, low-
pass filtering or even phase-retrieval techniques. The nature
of the measured data g - say emission tomography, transmis-
sion tomography, missing wedge acquisition, truncated data,
attenuated data - usually determines the choice of the best
reconstruction algorithm. The majority of these algorithms are
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explicitly dependent on the action of the operators B, R and
eventually P .

The computation of the operator R can be made very fast
using, for example, the Fourier-slice Theorem (FST) [1], which
relates the Fourier transform of the sinogram data g with the
Fourier transform of the reconstructed image f . The evaluation
of R f is a different algorithmic problem, which will not
be covered in this manuscript [2]. There exists, nowadays,
a class of sophisticated algorithms specially dedicated to the
inversion of g using the Fourier-slice theorem, called gridding
methods [3]–[6]. These are fast algorithms mainly due to the
use of Fast Fourier transform algorithms in the polar domain.

Even though the main concern of the imaging community is
inversion, as suggested by the fluxogram of Figure 2, our goal
in this manuscript is not the solution f . Instead, we look for a
fast computation of B. Indeed, as pointed by the literature in
the last twenty years, most of the reconstruction algorithms,
and for many different kind of imaging problems related to the
Radon transform, make an intense use of the operator B. We
justify the introduction of this new technique in several ways
throughout the manuscript. First, numerical experimentation
indicates that it may be faster than other available methods.
It is also very simple to implement compared to many of
the currently existing alternatives. Further, it presents images
with less artifacts than some of the other approaches for
this problem. Very importantly, it enables a natural and very
fast implementation of Tikhonov regularization for the Radon
inversion problem, which does not seem to be the case for the
other techniques in the literature. Finally, it presents a dual
nature with the important Fourier Slice Theorem, a feature
that is very satisfying and that could provide future insights
in the theory of tomographic image reconstruction.

For concreteness, some reconstruction algorithms that use
the backprojection operator are listed below:

a) Analytical: The filtered backprojection, or the filter
of the backprojection, are well known 2D analytical
inversion formulas, given respectively as f = B [P1g]
and f = P2 [Bg], where P1 and P2 are 1D and 2D
convolution filters respectively - see [7], [8];

b) Expectation Maximization: Based on the maximization
of the log-likelihood function, there is a difference
in the emission and the transmission case. Both are
multiplicative algorithms given as fixed points of the
operators φ( f ) = f B [g/R f ] / Bo and φ( f ) =
f B

[
de−R f

]
/ B[h], respectively for emission and

transmission. Here, where {h, d} are the photon and
blank scan counts respectively; and o is a sinogram of
ones;

c) Generalized Transforms: The generalized attenuated
Radon transform problem g = Rω f can be properly
inverted provided that the weight function w obeys a
decaying criteria [9]. A particular inversion scheme -
using the inverse of the Radon transform - is obtained
through the resolvent formalism. The details can be
found in [9]–[11] and we use fixed point iterations of the
functional by φ( f ) = f +BP [g − Rω f ]/a, with a an
appropriate function depending on the weight ω. Several
emission modalities take advantage of this formula, like

PET, SPECT and XFCT [12]–[14]. In particular, the case
a ≡ 1 and w ≡ 1 provide a simple iterative refinement
for the non-attenuated case g = R f ;

d) Regularization approach: As is easy to note, recon-
struction techniques based on the minimization of the
functional ‖R f −g‖2

L2
+H ( f ) will use, per iteration, the

computation of both operators {R,B}. Here, H ( f ) is
an operator imposing some property on the final recon-
structed image f . This family of inversion algorithms
has gained some attention recently, for example when
H is the total variation operator;

e) Fan/Cone Beam inversion: A classic result by [15]
establishes the fan-beam reconstruction formula as a
series, where the backprojection is the zeroth order term.
Apart from being an interesting result, the fan-beam
inversion depends explicitly on the computation of B,
which also plays an important role in the Feldkamp-
Davis-Kress [16] inversion algorithm for 3D data;

Describing the above small class of simple reconstruction
algorithms from (a) to (e), we note that we do not always need
an explicit evaluation of Bg with g = R f . In fact, this is a
trivial problem with an easy solution: BR f = f � 1

‖x‖ , with �
standing for a 2D convolution, [8], [17]. Of course, this fact is
only true in the ideal case, without noise and with an infinite
number of projections. We pose our problem, in the following
manner:

Problem: Given any sinogram data g ∈ V , can we find a
new and low-complexity algorithm to compute B[g] ∈ U?

The computation of the backprojection operator bears the
major computational cost of O(N3) for images with N2 pixels
and reconstructed from O(N) angular projections. For a high-
resolution tomographic synchrotron experiment, the amount
of data at a micro-tomography setup is considerably large
for today’s computational standards, mainly because of this
asymptotic floating point operations (flops) bottleneck. Indeed,
at the Brazilian National Synchrotron Light Source (LNLS) one
wishes to obtain 2048 reconstructions images with 2048 ×
2048 pixels from datasets having 3200 × 2048 points, or
possibly more. Therefore, implementation of B represents
the main bottleneck of the reconstruction process. If certain
useful mathematical properties of B are exploited, the com-
putational effort can be significantly reduced to O(N2 log N)
flops [3], [4].

Several techniques were developed aiming at a reduction to
O(N2 log N) flops for computing B. One approach - due to
Andersson - was established in [18], where the computation
of Bg is performed after a change from cartesian to
log-polar coordinates in the data. This approach leads to
a convolution, which is computable through Fast Fourier
Transform (FFT) algorithms. Although elegant, the method
suffer from the ill-conditioning of the Log-polar transform
at the “fovea”. Nevertheless, it is possible to translate the
fovea to different regions of the cartesian plane, in order to
enclose the reconstruction region. This leads to the concept
of partial-backprojection which can be easily implemented
in a parallel form. Other methods for fast computation of
B were presented in [19]–[22], using a divide and conquer
strategy based on hierarchical decompositions of the full
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Fig. 3. Fluxogram of the manuscript.

backprojection which are simpler than the full backprojection.
Hierarchical decompositions can be created both in the
image [21] or in the data [19], [20]. Yet another approach
is based on Non-uniform Fast Fourier Transform (NFFT)
algorithms (see [21], [23], [24]) and the so-called Fourier Slice
Theorem ([3], [5], [8], [25]. Linogram methods [26], [27]
are also based on a change of variables producing low cost
O(N2 log N) methods, but are also focused on reconstruction
from projections, and not on the computation of the
backprojection.

Our goal in this manuscript is to present a fast method for
the computation of the backprojection image b ∈ U for a
given sinogram g ∈ V . We claim [22] that the backprojection
of g ∈ V can be easily done by filtering the lines of the
g̃ one by one, where g̃ is the polar representation of g in
S+ = R × [0, 2π]. The methodology developed is called
backprojection-slice theorem (BST) since it has an obvious
relation to the Fourier-slice theorem. During the derivation
of the BST formula we have rediscovered a 4-step proof of
Andersson’s equation which is simpler than the original one
presented in his manuscript [18]. Since Andersson’s algorithm
has the same convolution nature as ours, we present a fair
comparison of both techniques throughout the manuscript.

The main contributions of the present paper are presented in
the diagram of Figure 3. The integral representations needed
to derive our formula are presented in the Appendix. Section II
presents a discussion of low-complexity algorithms for the
computation of B and also a 4-step re-derivation of Ander-
sson’s formula. Our low-complexity formula is presented in
Section III. Further comparison of all algorithms is presented
in Section V and a discussion of the results is presented in
Section VI.

Mathematical Definitions

We introduce the cartesian coordinate system in the plane
of a given slice of the object. Let the function f (x) ∈ U
be the feature function, i.e., a function which depends on the
internal structure of the object in the plane of the slice and
which defines the linear absorption coefficient of the sample.
Set U , referred to here as the feature space, is a Schwartz space
S(R2) (i.e., a space of rapidly decreasing functions on R

2).
A given frame (see Figure 1.A) represents the integral

of f (x) over straight lines passing through the sample and
perpendicular to the detector’s plane. One row of each of these

Fig. 4. Geometry of incoming x-rays for parallel tomography.

frame images contains the integrals relevant to a slice of the
object, and orthogonal to the rotation axis. Let us introduce an
axis t over the detector’s row. It is clear that for each angle θ
(see Figure 4), such a row is determined by

g(θ, t) =
∫

L(θ,t)

f (x)ds =
∫

R2

f (x)δ(x · ξ θ − t)dx, (I.1)

where L(θ, t) is a straight line defining the x-ray path,

L(θ, t) = {
x ∈ R

2 : x · ξ θ = t
}
, ξ θ = (cos θ, sin θ)T . (I.2)

From (I.1) we have a linear operator acting on the feature
function f , i.e., R : f ∈ U �→ g ∈ V , which is called the
Radon transform. Space V is the Schwartz space S(R+ ×
[0, π]). The operator B : V → U defined as

b(x) = Bg(x) =
∫

[0,π]
g(x · ξ θ , θ)dθ, (I.3)

is defined as the backprojection operator, and is the adjoint
of R in the following sense

∫

R+×[0,π]
R f (t, θ)g(t, θ)dtdθ =

∫

R2

f (x)Bg(x)dx, (I.4)

More about the theory of the integral operators {R,B} can
be found on [17], [25], [28], [29].

At this point, it is convenient to introduce some notations.
We first introduce the notations for the representation of
feature function f : R

2 → R in different coordinate systems,
and their respective jacobians:

a) Prüfer coordinates (see [30]): Using

x = p(μ)ξ θ , p : R+ → R, (I.5)

we have dx = |p′(μ)p(μ)|dμdθ . The representation is
denoted by [ f ]Pr(μ, θ). Function p will always be well
defined within the context by special notation as follows;

b) Log-polar coordinates: particular case of Prüfer coor-
dinates when p(μ) = eμ. Here, dx = e2μdμdθ . The
representation is denoted by [ f ]L(μ, θ);
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Fig. 5. (a) Shepp-Logan feature function f (x) and his associated sinograms
in different coordinate systems: (b) Semi-polar coordinates [g]s, (c) Polar
coordinates [g]P and (d) Log-polar coordinates [g]L .

c) Semi-polar coordinates: particular case of Prüfer coor-
dinates when p(μ) = μ. Here, dx = μdμdθ . The
representation is denoted by [ f ]P(μ, θ).

d) Sinogram coordinates are similar to the semi-polar coor-
dinates and, in fact, can be obtained by flipping the
angles θ ∈ [π, 2π) to the negative part of the t-axis,
so that t ∈ [−1, 1].

Using the above notation, function g in (I.1) can be written
as [g]P(t, θ) in order to indicate semi-polar coordinates. An
example, using the well-known Shepp-Logan phantom [31]
is presented in Figure 5. The sinogram of the Shepp-logan
feature function f is presented in the sinogram coordinate
system mentioned above.

Remark: In this manuscript we use the the integral operator,
sometimes with dx placed before the integrand, as it is more
convenient to make explicit the variables being considered.
Whenever the integrand is short, we adopt the classic notation∫

f (x)dx .
Notation: Some of the mathematical symbols used through-

out the manuscript are summarized in Table I.

II. CLASS OF ALGORITHMS FOR THE BACKPROJECTION

Let g ∈ V be a given sinogram. A naïve implementation of
the typical backprojection formula (I.4) has to be done using
nested loops. Indeed, for each pixel x lying on a predefined
meshgrid within the square ‖x‖∞ ≤ 1, the approximation of
b(x) = Bg(x) is given by

b(x) ≈ �θ

Nθ∑
k=1

g(x · ξ θk
, θk). (II.1)

TABLE I

LIST OF MATHEMATICAL SYMBOLS USED IN THIS MANUSCRIPT

It is easy to realize that the above approximation has a
computational cost of O(Nθ ) for each pixel x, where Nθ is the
total number of sampled angles. For a high resolution frame
(see Figure 1.A), a linear interpolation for x · ξ θ on the grid
of −1 ≤ t ≤ 1 is usually precise enough. Assuming that b is
represented by a square image of order N × N , the total cost
for computing the final backprojected image b is O(N2 Nθ ).
In practice, Nθ has almost the same magnitude of N , and thus
we can state that the asymptotic cost to obtain b is O(N3).
Such an algorithm is impractical for high-resolution images.

There are at least four other types of backprojection algo-
rithms which can dramatically reduce the computing time of
the backprojected image b, for large datasets:

i) A fast slant-stack based approach [32] was proposed
by Averbuch et al. Although this is an elegant and fast
approach, it will not be covered in this manuscript;

ii) Hierarchical decomposition [19]–[21]: Two different
approaches that apply the divide-and conquer paradigm
to the backprojection computation, splitting it recur-
sively into smaller and simpler subproblems;

iii) NFFT [33]: The Fourier Slice Theorem sets the Fourier
Transform as a bridge between the Radon Transform
R f (θ, t) and the original image f . However, tomo-
graphic data does not provide an evenly distributed
sampling of the Fourier space, as required by tradi-
tional FFT techniques (see [34]). Use of this Fourier
approach was enabled by research on NFFT algorithms
(see [21], [23], [24]);

iv) Andersson’s formula [18]: Such a formula is obtained
with an appropriate change of variables on the classical
equation of the backprojection formula (I.4). The main
idea is to convolve the sinogram in log-polar coordinates
with an ideal kernel using FFT algorithms. In this man-
uscript we refer to LP (log-polar) as the algorithm using
Andersson’s formula.

In this paper, we focus mainly on the comparison between
BST and algorithm (iv).

A. 4-Step Proof of Andersson’s Formula

The approach of Andersson is based on a representation
of the Backprojection/Radon transform as a convolution, by
casting the computation in a log-polar coordinate system.
In this section we propose a different proof for his formula.
His formula is a consequence of the integral representation of
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the backprojection as a summation over circles, as presented
in the Appendix A. Using the coordinate system notation
of the previous section, where [·]L denotes the log-polar
representation of some function, the main formula of the log-
polar backprojection is written as

[Bg]L(ρ, θ) = [g]L � [K ]L (ρ, θ), (II.2)

where � stands for the 2D convolution, and K is the convolu-
tion Kernel

[K ]L(ρ, θ) = δ(1 − eρ cos θ). (II.3)

We provide an alternative proof for the equation (II.2), assum-
ing that g ∈ S(R+ × [−π, π]).

Proof: We start with the integral representation of the
backprojection operator, given in (A.10) (See Appendix A).
Now, formula (II.2) is derived as follows:

a) Changing the integral (A.10) from cartesian coordinates
y ∈ R

2 to Prüfer coordinates, i.e., y ≡ yμ,θ = p(μ)ξφ

we get d y = |p′(μ)p(μ)|dμdθ and

Bg(xρ,θ ) =
∫

S+
g(yμ,φ)δ

(
κxρ,θ (yμ,φ)

)

×|p′(μ)p(μ)|dμdφ (II.4)

b) The argument of the Delta distribution in (II.4) is

κxρ,θ (yμ,φ) = p(μ)2
[

1 − p(ρ)

p(μ)
ξφ · ξ θ

]

= p(μ)2
[

1 − p(ρ)

p(μ)
cos(φ − θ)

]
(II.5)

c) Let [·]Pr be the representation in Prüfer coordinates.
From (II.5) and (II.4) we arrive at

[Bg]Pr(ρ, θ)

=
∫

S+
[g]G(μ, φ)δ

(
p(μ)2

[
1 − p(ρ)

p(μ)
cos(φ − θ)

])

×|p′(μ)p(μ)|dμdφ

=
∫

S+
[g]G(μ, φ)δ

(
1 − p(ρ)

p(μ)
cos(φ − θ)

)

×|p′(μ)p(μ)|
p(μ)2 dμdφ (II.6)

where S+ = R+ × [−π, π]
d) A convolution is obtained in (II.6) only if p is such

that p(ρ) = p(μ)p(ρ − μ), which in turn implies that
p is an exponential function. Hence, Prüfer coordinates
reduce to log-polar coordinates, which we denote by [·]L.
Finally, we obtain

[Bg]L(ρ, θ) =
∫

S+
[g]L(μ, φ)

×δ
(
1 − eρ−μ cos(φ − θ)

)
dμdφ (II.7)

which is the final convolution formula. �

Fig. 6. (a) Action of BST versus FST (Fourier-slice theorem) (b) Action of
BST on a polar mesh.

III. BACK-PROJECTION SLICE THEOREM

Although Andersson’s approach is asymptotically fast, it has
a few drawbacks. Firstly, the gain of speed using Fourier
transforms to compute the convolution is reduced with for-
ward/backward log-polar transformations. Also, these inter-
polations can produce numerical errors, especially near the
origin, due to a strong non-uniformity of the log-polar mesh
in that region. To avoid these factors, another approach for the
calculation of the backprojection operator can be used. This
approach is based on the following theorem:

Theorem (Backprojection Slice Theorem (BST)): Let g =
g(t, θ) ∈ V be a given image in the sinogram space
and ·̂ denote the Fourier transform operation. It follows that
the backprojection B satisfies

B̂g(σ ξ θ ) = ĝθ (σ )

σ
(III.1)

with σ > 0 ∈ R and θ ∈ [0, 2π].
Before we proceed with a formal proof, we remark that,

the backprojection-slice theorem (BST) is the dual of the
Fourier-slice theorem (FST), in the sense that g = R f and
b = Bg are related in the reciprocal space within a polar grid.
As a well known fact, the composition BR is a convolution
operator with point spread function given by 1/‖x‖2, [8],
[17], [28]. If g = R f the computation of b = Rg follows
easily with the aforementioned 2D convolution. Also, FST

provide a direct link between { f, g} and {b, g}. If g �= R f the
link between { f, g} is no longer valid through FST but we can
still provide a powerful link between {b, g}. This is exactly
the goal of the backprojection slice theorem. We remark
that, physically, the backprojection corresponds to an average
’smear’ of all projections passing through a single pixel x.
Since an average is described as a convolution, it is natural to
regard formula (III.1) as an average in the frequency domain.
In fact, a convolution with a singular kernel like 1/σ provides
the usual blurring, typical from the backprojection operator.
The explicit average of all rays x · ξ θ = t passing through a
pixel x is clear in the definition of B, see (I.3). Finally, as
shown in diagram (b), it is possible to estimate b = Bg at
each radial line {(σ, θk) : σ > 0, θk ∈ [0, 2π]}, over the polar
domain, as presented in Fig. 6.

The following proof provides the calculation of Bg assum-
ing that g is arbitrary in the sinogram space V .

Proof: Using the sifting property of the δ-distribution, the
backprojection (I.3) can be presented in the following form

Bg(x) =
∫ π

0
g(x · ξ θ , θ)dθ

=
∫ π

0

∫

R

g(t, θ)δ(t − x · ξ θ )dtdθ (III.2)

Authorized licensed use limited to: KIT Library. Downloaded on August 11,2022 at 12:22:48 UTC from IEEE Xplore.  Restrictions apply. 



MIQUELES et al.: BACKPROJECTION SLICE THEOREM FOR TOMOGRAPHIC RECONSTRUCTION 899

Considering B̂g the 2D Fourier transform of Bg, we use
representation (A.10) (see Appendix) to obtain,

B̂g(ω) =
∫

R2
Bg(x)e−iω·xdx

=
∫

R2
dx

∫

R2
d y [g]C(y)δ (y · (y − x)) e−iω·x

=
∫

R2
d y [g]C(y)

∫

R2
dx δ (y · (y − x)) e−iω·x

≡
∫

R2
d y [g]C(y)T (y,ω)

where y,ω ∈ R
2 and

T (y,ω) =
∫

R2
dx δ

(
h y(x)

)
e−iω·x, (III.3)

with h y defined as

h y(x) = y · (y − x) (III.4)

Since the distribution (III.3) is supported in the set h−1
y (0) =

{x ∈ R
2 : h y(x) = 0}, it follows from (A.1) (See Appendix A)

and ∇h y = − y that

T (y,ω) = 1

‖y‖2

∫

h−1
y (0)

e−iω·xds(x)

=
∫

h−1
y (0)

e−iω·x(q)dq

The set h−1
y (0) determines a straight line passing through y

and with normal vector y. Thus, h−1
y (0) = y+span{S y}, being

S y ⊥ y and S a π
2 -rotation matrix. Therefore, x(q) ∈ h−1

x (0)
is on the form x(q) = y + q S y and the integral in (III.5) can
be written as:

T (y,ω) =
∫

R

e−iω·[y+qS y]dq (III.5)

= e−iω· y
∫

R

e−iqω·(S y)dq (III.6)

= e−iω· yδ (ω · S y) (III.7)

Hence, the Fourier transform of Bg becomes

B̂g(ω) =
∫

R2
[g]C(y)δ (ω · S y) e−iω· y d y (III.8)

For ω fixed, { y ∈ R
2 : ω · (S y) = 0} = span{ω}, with S

a π
2 -rotation matrix. Indeed, since S y ⊥ w and S y ⊥ y, it

follows ω ‖ y. Once again, using the representation (A.1) (see
Appendix A) for (III.8) we arrive at

B̂g(ω) =
∫

R

[g]C(qω)

‖Sω‖2
e−iω·(qω) ds(ω) (III.9)

Since ‖Sω‖2 = ‖ω‖2 and ds(ω) = ‖ω‖2dq , we finally obtain

B̂g(ω) =
∫

R

[g]C(qω)e−iq‖ω‖2
2 dq (III.10)

From the above equation, the backprojection is a polar con-
volution. Indeed, switching the frequency domain to polar

coordinates, i.e., ω = σ ξ θ (with σ ∈ R+ and θ ∈ [0, 2π])
we get

B̂g(σ ξ θ ) =
∫

R

[g]C(qσ ξ θ )e
−iq‖σ ξ θ‖2

2 dq (III.11)

=
∫

R

[g]C(uξ θ )

σ
e−iuσ du. (III.12)

Observe that [g]C(uξ θ ) = g(u, θ) is the input sinogram
g(u, θ). From (III.10) and (III.12), using polar coordinates

[B̂g]P(σ, θ) = B̂g(σ ξ θ ) = 1

σ

∫

R

g(u, θ)e−iuσ du (III.13)

Identity (III.13) is our backprojection-slice Theorem (III.1) for
computing the operator B.

Indeed, at each radial line θ in the frequency domain, the
2D Fourier transform of B equals the 1D radial Fourier trans-
form of the projection g(t, θ) multiplied by the kernel 1/σ
for σ > 0.

Remark 1: The mathematical proof outlined above provides
a direct formula for the computation of a backprojected image,
i.e., given a sinogram g, the explicit steps to compute the
backprojection in the frequency polar coordinates results in
formula (III.1). In practice, there are several iterative methods
that depends explicitly on the computation of the backprojec-
tion of any sinogram. In the other hand, analytical formulas
usually handle with the backprojection of a filtered sinogram,
from where standard formulas like the filtered backprojection
or the filter of the backprojection are established. To validate
our backprojection result we remark the following items:

(i) It is a well known fact [17], [25], [28] that, for a given
feature function f ∈ U , the following property holds

BR f (x) = ( f � h)(x), h(x) = 1

‖x‖2
(III.14)

which, in the frequency domain, is written as (cartesian
and polar representation, respectively)

B̂R f (w) = f̂ (w)
1

‖w‖2
⇔ B̂R f (σ ξ θ ) = f̂ (σ ξ θ )

1

σ
(III.15)

due to the fact that F : 1
‖x‖2

�→ 1
‖w‖2

. Now, replacing
the backprojection slice theorem (III.1) into (III.15), we
obtain

R̂ f (σ ξ θ )
1

σ
= f̂ (σ ξ θ )

1

σ
⇒ R̂ f (σ ξ θ ) = f̂ (σ ξ θ )

(III.16)

which is the celebrated Fourier Slice-Theorem [29].
(ii) From the classical inversion of the Radon transform, i.e.,

the filtered-backprojection algorithm, it is true that

BFg(x) = f (x), g = R f (III.17)

where F is a low-pass filtering operator, that is
F̂g(ν, θ) = ĝ(ν, θ)|ν|, for ν ∈ R. In the polar frequency
domain, (III.17) reads B̂Fg(σ ξ θ ) = f̂ (σ ξ θ ). From
the backprojection slice Theorem (III.1), such equation
becomes

1

σ
F̂g(σ ξ θ ) = f̂ (σ ξ θ ) ⇒ 1

σ
ĝ(σ ξ θ )σ = f̂ (σ ξ θ ),

σ ∈ R+ (III.18)
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Once again, the above equation yields the Fourier
Slice-Theorem.

Remark 2: The DC-component of the Backprojection of
some function g lying in the sinogram space is defined by

B̂g(0) =
∫

R2
Bg(x)dx (III.19)

=
∫

R2
dx

∫ π

0
dθ g(x · ξ θ , θ) (III.20)

=
∫ π

0
dθ

∫

R

dt
∫

R

ds g(t, θ) ≡ M (III.21)

where we have used dx = dtds to make explicit the change
of variables from x to (t, s), being s the variable along the
direction ξ⊥

θ . The DC of an arbitrary g ∈ V provide1 M = ∞.
In this sense, B̂g behaves like a tempered distribution since
Bg lies in a Schwartz space, where the Fourier transform is
an automorphism. Also, it is easy to note that

ĝ(σ, θ)

σ
= i ĥ(σ, θ), h(t) =

∫ t

∞
g(t, θ)dt (III.22)

i.e., h is a primitive of g. Hence, using (III.22) as σ → 0,
the limit of the ratio ĝ(σ, θ)/σ diverges in σ = 0. Still, BST

formula can be easily applied for some g ∈ V with a nonzero
DC-component. In fact, setting p(t, θ) = g(t, θ)− ĝ(0, θ), it is
true that p̂(0, θ) = 0 and the backprojection of g follows with
Bg(x) = B p(x) + ĝ(0, θ).

IV. REGULARIZED FBP: AN APPLICATION OF BST

The BST formula (III.1) can be used to obtain an analytical
solution of the standard Tikhonov regularization problem in
the feature space (U, ‖ · ‖L2)

minimize
f ∈U

‖R f − g‖2
L2

+ λ‖ f ‖2
L2

(IV.1)

In fact, the Euler-Lagrange equations provide the optimality
condition for the above optimization problem, i.e., f mini-
mizes (IV.1) if and only if [35]

(R∗R + λI) f (x) = R∗g(x) (IV.2)

with R∗ standing for the adjoint operator of the Radon
transform and I the identity operator in U . In fact, (IV.2) are
the so-called normal equations in the Hilbert spaces U and V .
Since R∗ = B in the usual inner-product for L2, the above
equation becomes

(BR + λI) f (x) = Bg(x) (IV.3)

Applying the Fourier transformation on (IV.3) and using
property (III.14), we obtain the following standard result

f̂ (ω)
1

‖ω‖2
+ λ f̂ (ω) = B̂g(ω)

⇐⇒ f̂ (ω)

(
1 + λ‖ω‖2

‖ω‖2

)
= B̂g(ω)

(IV.4)

1Even if g is the sinogram of a compactly supported function feature
function on the unit disk ‖x‖2 ≤ 1, we have ĝ(0, θ) = constant, although
with M = ∞.

From (IV.4) is easy to obtain f as a convolution of Bg with an
specific 2D filter. If λ = 0 the analytical formula obtained is
exactly the ‘rho-filter layergram’ proposed in [7] consisting in
a post-processing of the backprojection (also mentioned earlier
in this manuscript as filter of the backprojection).

The novelty here is that, if we change (IV.4) to polar
coordinates, we can immediately apply the BST formula (III.1).
Indeed, since ω = σ ξ θ , the pointwise product becomes

f̂ (σ ξ θ )

(
1 + λσ

σ

)
= B̂g(σ ξ θ ) (IV.5)

which is essentially the same as

f̂ (σ ξ θ ) =
(

1

1 + λσ

)
ĝ(σ, θ) (IV.6)

The above equation is a regularized version of the
Fourier-Slice-Theorem and can be used to obtain f explicitly
through any gridding strategy [3], [5]. In fact, after the filter
of g with 1/(1 + λσ) we can use the Direct Fourier inversion
method (i.e., a gridding method) described in [4] and [36] to
obtain f .

Applying (IV.6) in the change of variables of the Fourier
representation of f (x) we finally obtain a new representation
for the reconstructed image f ,

f (x) =
∫

R2
f̂ (ω)eiω·xdω

=
∫

R

dσ

∫ π

0
dθ f (σ ξ θ )|σ |eiσ x·ξθ

=
∫

R

dσ

∫ π

0
dθ

(
1

1 + λ|σ |
)

ĝ(σ, θ)|σ |eiσ x·ξ θ (IV.7)

Equation (IV.7) provides exactly the same reconstruction
pattern as a typical filtered backprojection reconstruction algo-
rithm, but with a different filter. In fact, we can generalize our
regularized strategy in the following representation

fλ(x) = BFλg(x) (IV.8)

Now, { fλ} is a family of solutions of the optimization prob-
lem (IV.1), depending on the regularization parameter λ. The
filter function Fλ, in the frequency domain reads

F̂λ(σ ) = |σ |
1 + λ|σ | (IV.9)

Our regularized solution (IV.8) depends explicitly on the
computation of the Backprojection operator B, and either the
BST, Andersson’s formula, Slant-Stack or other approach can
be used to obtain the final inversion f .

V. NUMERICAL RESULTS

All the algorithms were implemented using the fast Fourier
framework FFTW3 [37]. We validate our approach using four
datasets: one real sinogram and three simulated. The experi-
mental sinograms (a slice from a wood-fiber) was obtained at
the imaging beamline of the Brazilian Synchrotron light source
and are high-resolution images with 2048 × 1000 (rays ×
angles). Therefore, the feature images (either backprojected or
filtered-backprojected) were restored with 2048 × 2048 pixels
in order to test the efficiency of the algorithms. The simulated
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data are: i) the classical shepp-logan phantom depicted in
Figure 5, ii) the circular function and iii) the following linear
combination given respectively by

f (x) =
⎧
⎨
⎩

1, ‖x‖2 ≤ 1

2
0, otherwise

f (x) =
1000∑
j=1

δ(x − a j ) (V.1)

where {a j } are points randomly spanned over the domain
[−0.3, 0.3] × [−0.3, 0.3], We remember that the analytical
backprojection is easily obtained from the convolution of the
original image f with the point spread function 1/‖x‖2.

The BST strategy will be compared against Andersson’s
algorithm (LP standing for log-polar) since they have a similar
convolution nature. Image comparisons between BST, using
Non-equispaced FFT’s and the ray-based Bresenham’s algo-
rithm (BRES) [38] are also presented in order to illustrate the
quality of the final backprojected image.

In this section we use the following symbols to indicate
mesh properties:

• {Ns , Nθ ,�s}: number of points in the polar domain
s ≥ 0, number of points in the angular domain θ ∈
[0, 2π], and the associate stepsize in the s-axis;

• {N,�x }: number of points in the square domain [−1, 1]2

and the associate stepsize (equal in both directions);
• Nρ : number of points in the log-polar domain ρ ∈ (ρ0, 0].

Here, we use ρ0 as a large negative number in order to
approximate s = 0 in the polar domain.

A. Time Speed: BST × LP

The straight usage of the Fourier transform for the imple-
mentation of (III.1) - produces rather big artifacts near the
origin (boundary effect), caused by the fact that the values on
sinogram on the line s = 0 are not equal to 0. This problem
can be solved with usage of short-time Fourier transform near
the origin, with window w. In this work we use as the Kaiser-
Bessel function [39], defined on the polar mesh through:

w(s) =
∣∣∣I0

(
s

√
1 − (2i − Ns + 1

Ns − 1

)2
)∣∣∣/|I0(s)|, (V.2)

where I0(·) is a modified Bessel function of the zeroth order.
The BST strategy applied over a sinogram image g is

obtained after 7 processing stages, each one executed within an
elapsed time τk . The final backprojected image b is obtained
as a composition of algorithms {Pk}, i.e.,

b = P6 P5 P4 P3 P2 P1 P0(g) (V.3)

Each processing step Pk was implemented in a parallel form
with m threads. Step P0 indicates an interpolation to polar
coordinates with the multiplication by the Kaiser-Bessel
window function (V.2). This is an easy process, computed
with complexity O(Nθ Ns ). Step P1 is the zero padding
of the polar sinogram - equivalent to an oversampling in
the frequency domain - with the same complexity of P0.
Even though P0 and P1 can be merged into one single step,
they were considered disjoint operations in our customized
implementation. Step P2 is the convolution of the polar
sinogram with kernel 1/σ . This part was divided in m parallel

TABLE II

EXECUTION TIME FOR BST (IN SECONDS) USING A INTEL
XEON 3.4 GHz AND DIFFERENT NUMBER m OF THREADS.
THE SIZE OF BACKPROJECTED IMAGES IS EQUAL TO THE

NUMBER OF RAYS. TOMOPY PARALLELIZATION IS ON THE

SLICE LEVEL, USING A SINGLE THREAD FOR ONLY
ONE SLICE [40]; WHICH IS A DIFFERENT APPROACH

ADOPTED IN THE IMPLEMENTATION OF BST
FOR THIS MANUSCRIPT

FFT’s, each computed at an individual thread with complexity
O(Ns log Ns ). Step P3 is an interpolation from polar to
cartesian coordinates in the frequency domain. The bigger
the zero padding at step P1, the better this part will behave,
preventing aliasing artifacts. Step P4 is a 2D inverse Fourier
transform of the data from step P3. This is an operation
with low computational complexity and obtained with order
O(N2

s log Ns ). Step P5 is the FFT shifting from previous
step and P6 the final (and optional) 2D interpolation of the
resulting image to the correct feature domain [−1, 1]×[−1, 1].

We have performed a total of 10 executions, for a fixed
number of threads m, yielding a sequence of 10 elapsed
times {τ (1)

k , τ
(2)
k , . . . , τ

(10)
k } with summation {τ (1), . . . , τ (10)}

respectively, corresponding to the final execution time of a
backprojection with BST. The average times (in seconds) for
each step Pk are presented in Table II. The standard deviation
of the execution is indicated in the table with the symbol std.
As expected, most of the computational complexity comes
from step P2, the 1D convolution with kernel 1/σ .

The execution time using the reconstruction software
Tomopy [40] was also included in Table II as a reference.
Using the same number of cores, BST is able to backproject
a sinogram image of 1024 rays and 2048 angles in 0.565 sec-
onds, while the reference software builds a reconstruction
with gridding strategies in 0.762 seconds. For a sinogram
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with dimensions (2048, 4096) BST is also comparable with
Tomopy, processing the final image in 0.18 seconds against
2.761 seconds of the reference software. We have not included
time for other reconstruction softwares because BST relies
on the same gridding strategy of Tomopy’s algorithm. We
remark that 2.761 seconds is the time for processing only one
slice using the gridding algorithm from Tomopy; to process
a block of S > 1 sinograms, the average time obtained is
0.17 seconds per slice, which is close to the one obtained using
BST. It is also important to note that parallelization of Tomopy
is on the slice level, using a single thread to process a single
slice. This is a different approach from the one adopted in the
manuscript, where we parallelize the process of a single slice.
A comparison of BST and Tomopy, for a block of sinograms
is beyond the scope of this work, as we are mainly interested
in the process of one slice through the new backprojection
formulation.

The complexity of reconstruction, based on BST formula
depends on the size of the final image, which we are using as
the number of given rays. Much of computational complexity
falls on the 1D Fourier transforms, whose size is equal to
the number of rays in the sinogram, and to final 2D Fourier
transform in cartesian coordinates. Hence, the complexity is
of order O

(
Nθ Ns log2(Ns ) + 2N2 log2 N

) + �P where �P
denotes the total amount of complexity for polar interpolations
(polar to cartesian, usually �P = O(N2

s ) ) and Ns is the
number of rays in the polar representation.

B. Image Comparisons

According to the log-polar representation, s → 0 in the
polar domain causes ρ → −∞ in the log-polar domain.
Of course, in real calculations it is not possible to get a proper
interpolation to this grid. This practical problem can be solved
in two ways. The first approach is clearly mathematical, and
was proposed by Andersson [18], called partial backprojection
method. This method is based on moving the origin outside
the region of interest, which allows us to make a clear interpo-
lation of all points of the sinogram with non-zero values. The
second approach is to select a proper ρ0, which adapts properly
to the resulting cartesian grid. For clear interpolation we have
to use ρ0 as a very large negative number, from which we
start the approximation to the log-polar mesh. But, in fact, this
number is connected to the mesh which is chosen for cartesian
representation of the result. Assume the cartesian mesh has the
direction step �x . In this case, to avoid the loss of information
near the origin, we have to set ρ0 < ln �x . The performance
of Log-polar backprojection depends on the desired resolution
of the resulting image. The oversampling of log-polar mesh
grows up fast as the number of pixel increases in the cartesian
grid, as it shown below in this section. To obtain a good recon-
struction, it is easy to obtain the number of points Nρ in the
axial log-polar domain using Nρ ≈ ln(1/N)/ ln(1 −�s)). An
example of the log-polar backprojection using an adptative ρ0
selection is presented in Figure 7, for the classical Shepp-logan
function. Images (c) and (d) make a local comparison of
BST and LP near the origin, where we see the effect of the
Kaiser-Bessel function.

Fig. 7. Backprojection applied to the Shepp-Logan function and their
comparison near the origin. (a) LP. (b) BST. (c) LP near x = 0. (d) BST
near x = 0.

TABLE III

EXECUTION TIME OF ANDERSSON’S ALGORITHM (IN SECONDS) USING A

INTEL XEON 3.4GHz AND DIFFERENT NUMBER m OF THREADS. THE

SIZE OF BACKPROJECTED IMAGES IS EQUAL TO THE NUMBER OF

RAYS. TOMOPY PARALLELIZATION IS ON THE SLICE LEVEL,
USING A SINGLE THREAD FOR ONLY ONE SLICE [40];

WHICH IS A DIFFERENT APPROACH ADOPTED IN THE

IMPLEMENTATION OF BST FOR THIS MANUSCRIPT

The log-polar strategy applied to a sinogram image g
is obtained after 4 processing stages {P0, P1, P2, P3}, each
one executed within an elapsed time τk , k ∈ {0, 1, 2, 3}.
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Fig. 8. Comparison of four backprojection algorithms; see text for details.
(a) Analytical. (b) BST. (c) LP. (d) NFFT. (e) Analytical. (f) BST. (g) LP.
(h) Ray-Based.

The final backprojected image b is obtained as a composition
of algorithms {Pk}, i.e.,

b = P3 P2 P1 P0(g) (V.4)

The processing steps indicated above are similar to BST.
Step P0 indicates an interpolation to polar coordinates; step P1
is the interpolation from polar to log-polar coordinates with
zero padding; step P2 is the 2D convolution with Andersson’s
kernel; step P3 is an interpolation back to cartesian coordinates
in the feature domain. Using the same ideas for timing

Fig. 9. Exact and numerical backprojection with BST for the circular
function.

Fig. 10. Backprojection applied over noisy sinograms. Comparison between
the log-polar (LP) approach and the backprojection slice theorem (BST).
(a) LP. (b) BST. (c) LP near x = 0. (d) BST near x = 0.

algorithm speed, we present in Table III the execution times
of Andersson’s algorithm using different number of threads,
also compared with a reference software like Tomopy [40].
Our implementation was based on FFT’s and using the same
parallel strategy of BST.

The computational complexity of Andersson’s algorithm is
similar to the complexity of the 2D convolution, i.e.

�LP = O
(
Nθ Nρ(log2 Nρ + log2 Nθ )

) + �L, (V.5)

where �L is the summarized complexity of all log-polar inter-
polations (sinogram to log-polar and log-polar to cartesian).
Here we assume that the Fourier transform of the kernel was
pre-calculated (numerically, or analytically, like in [18]) and
we do not take it into account for the final complexity. In case
of adaptive ρ0 selection a new Nρ is selected leading to an
oversampling of the log-polar sinogram. For most common
sizes of the sinogram (i.e. 512 < Ns , N < 16000) this over-
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Fig. 11. (a)-(d): Regularized reconstructions using BST as a backprojection
with λ = 0, λ = 0.0001, λ = 0.001 and λ = 0.01 respectively;
(e)-(h): Reconstructions using different algorithms from Tomopy [40],
gridrec, art, mlem and pml_quad respectively.

sampling is not very big (Nρ ≈ 4Ns ), and the complexity of
log-polar reconstruction can be estimated as 8N2(log2 N +1).

On Figure 8 we present the comparison of four differ-
ent backprojection methods with the analytical backprojected
image obtained from the sinogram of the function f . A plot
comparing the BST image with the analytical backprojection
at the line x1 = 0 is presented in Figure 9. A comparison of
backprojected images from the wood-fiber sample, using BST
and LP, is presented in Figure 10.

Fig. 12. Mean square error (MSE) of the result, obtained using different
algorithms, in dependence on the MSE of the input sinogram.

The regularized filtered-backprojection algorithm described
in Section IV was applied to the noisy data gathered for the
wood-fiber. The results are shown in Figure 11 for the wood-
fiber sample using only three values for the regularization
parameter λ. In fact, an algorithm for the selection of the
optimal parameter is beyond the scope of this manuscript.
Regularized filtered-backprojected images were obtained using
λ ∈ {0, 0.0001, 0.001, 0.01}. As it is known from Tikhonov
regularization schemes, the bigger is λ, the smoother the
resulting image will be. This is clearly visible in Figure 11,
what indicates that such an approach could be used to increase
the constrast in the final reconstructed image. A comparison
of the regularized reconstructions with those obtained from
software Tomopy [36], [40], using four different algorithms,
is also presented in Figure 11. The images reconstructed by
Tomopy used default filter, i.e., Shepp-Logan, for gridrec
and one single iteration for the iterative methods art, mlem
and pml_quad. Notice that the simultaneous methods mlem
and pml_quad provide over-smoothed images in the first
iteration, but the row-action method art is already sufficiently
accurate. Nonetheless, because our intent is not to compare
analytical algorithms with iterative methods, we have not
tried to select the best iteration number for each iterative
method.

Finally, Figure 12 presents some benchmarks of accuracy
for the developed algorithm compared with the other three
techniques. More precisely, we present the resulting mean
squared error (MSE) versus the error in the input data (i.e.,
the sinogram). Calculations were done for the Shepp-Logan
phantom with addition of Poisson noise to the analytical
sinogram. From Figure 12 one can note that for weak noises
BST shows the best accuracies, while Log-Polar reconstruction
is very stable to strong noise.

VI. CONCLUSION

In this manuscript we have proposed a new backprojection
technique (BST) and compared it against three other already
established algorithms, the log-polar (LP) approach from
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Andersson [18], with the use of Non-Uniform Fast Fourier
Transforms (NFFT) from [33] and with ray-based Bresenham’s
[38], [41] algorithm. With the increasing size of input data,
measured at imaging beamlines from synchrotron facilities, the
need for fast post-processing of the data becomes an immedi-
ate demand. Either conventional reconstruction techniques like
filtered backprojection or more robust iterative methods can
benefit from a fast backprojection algorithm. Finally, in order
to demonstrate this possibility in practice, we have provided an
application where the Tikhonov image is computed by means
of the BST formula in a short amount of time, thereby enabling
the practical application of interesting regularization schemes
to very large datasets. The BST formula is also very appealing
for iterative reconstruction methods in tomography where the
backprojection computation is needed per iteration.

The BST formula is very appealing for a GPU imple-
mentation because the convolution is just in one dimension.
The Fourier transform applied over a block of sinograms,
followed by the pointwise multiplication by kernel 1/σ and
interpolation to cartesian coordinates can be made extremely
fast using GPU advanced strategies. On the other hand, we
have to compute the entire block of images in just one
operation, which may be a limitation of BST for large datasets.
In this cases, ray based methods could be attractive even
though with a higher computational complexity.

APPENDIX A
INTEGRAL REPRESENTATIONS

We use the following standard representation for path inte-
grals, the proof can be found in [17]: for a continuously
differentiable z : R

n → R such that ‖∇z‖2 �= 0 it is true
that:

∫

Rn
h(y)δ(z(y))d y =

∫

C−1(0)

h(y(s))
‖∇z(y(s))‖2

ds(x) (A.1)

where ds(x) is the arclength measure along curve C−1(0).
Assuming that g ∈ V is a given sinogram and x a pixel
in the reconstruction region. The backprojection (I.4) of g
is defined as the contribution of all possible straight lines,
parameterized by the angle θ , and passing through x. Using
the sifting property of the Delta distribution, we have

Bg(x) =
∫ π

0
g(x · ξ θ , θ)dθ (A.2)

=
∫ π

0

∫

R

g(t, θ)δ(t − x · ξ θ )dtdθ (A.3)

Switching the above integral from (t, θ) coordinates to carte-
sian coordinates y ∈ R

2 we have |t|dtdθ = d y; where Bg
now becomes

Bg(x) =
∫

R2
[g]c(y)δ(z(y))

1

‖y‖2
d y (A.4)

with [g]c(y) = g(t (y), θ(y)) refering to the sinogram g in
cartesian coordinates. In fact, |t| = ‖y‖2 is the unsigned
distance to the origin and θ = arctan(

y2
y1

) ∈ [0, π] is the

angle with respect to the y1-axis. Function z reads

z(y) = t − x · ξ θ (A.5)

= ‖y‖2 − x1 cos θ(y) − x2 sin θ(y) (A.6)

= ‖y‖2 − x1
y1

‖y‖2
− x2

y2

‖y‖2
(A.7)

= ‖y‖2 − (x1 y1 + x2 y2)

‖y‖2
(A.8)

= y · (y − x)

‖y‖2
(A.9)

From (A.9), (A.4) and the property δ(au) = 1
|a|δ(u) for all

u ∈ R, the backprojection now follows:

Bg(x) =
∫

R2
[g]c(y)δ(κx(y))d y, κx(y) = y · (y − x)

(A.10)

It should be noted that, for a fixed x ∈ R
2, the set κ−1

x (0) =
{ y ∈ R

2 : κx(y) = 0} is defined as a circle in the plane.
Indeed, since y · (y − x) = y · y − 2 y · ( x

2

) = ∥∥ y − x
2

∥∥2
2 −∥∥ x

2

∥∥2
2, it follows that κ−1

x (0) is a circle passing through the
origin y = 0, centered at 1

2 x and with radius 1
2‖x‖2. Since

κ−1
x (0) = { 1

2 x+rξ θ : θ ∈ [0, 2π], r = 1
2‖x‖2} is a parametric

representation of the circle, the backprojection operator also
reads, in an alternative form: B is a stacking operator through
circles κ−1

x (0):

Bg(x) =
∫

κ−1
x (0)

[g]c(y)
‖2 y − x‖2

ds (A.11)

= 1

2

∫ 2π

0
[g]c

(
1

2
x + 1

2
‖x‖2ξ θ

)
dθ (A.12)

The above representation follows from ds = 1
2‖x‖2dθ , (A.10)

and (A.1) with ∇κx(y) = 2 y − x. Last equality comes from
y = 1

2 x + 1
2‖x‖2ξθ ∈ κ−1

x (0) for some θ . Therefore, in
cartesian coordinates, the backprojection contribution for a ball
{u ∈ R

2 : ‖u − x‖2 ≤ ε} comes from a family of circles
passing through the ball and the origin, this fact is related to
the comet-tail region mentioned in [42].
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